Optimized Schwarz waveform relaxation for Primitive Equations of the ocean

نویسندگان

  • Emmanuel Audusse
  • Pierre Dreyfuss
  • Benoit Merlet
  • E. AUDUSSE
چکیده

In this article we are interested in the derivation of efficient domain decomposition methods for the viscous primitive equations of the ocean. We consider the rotating 3d incompressible hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic analysis of the system with respect to the Rossby number, we compute an approximated Dirichlet to Neumann operator and build an optimized Schwarz waveform relaxation algorithm. We establish the wellposedness of this algorithm and present some numerical results to illustrate the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Schwarz Waveform Relaxation for the Primitive Equations of the Ocean

In this article we are interested in the derivation of efficient domain decomposition methods for the viscous primitive equations of the ocean. We consider the rotating 3d incompressible hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic analysis of the system with respect to the Rossby number, we compute an approximated Dirichlet to Neumann operator and build an op...

متن کامل

Lagrange-Schwarz Waveform Relaxation domain decomposition methods for linear and nonlinear quantum wave problems

A Schwarz Waveform Relaxation (SWR) algorithm is proposed to solve by Domain Decomposition Method (DDM) linear and nonlinear Schrödinger equations. The symbols of the transparent fractional transmission operators involved in Optimized Schwarz Waveform Relaxation (OSWR) algorithms are approximated by low order Lagrange polynomials to derive Lagrange-Schwarz Waveform Relaxation (LSWR) algorithms ...

متن کامل

Schwarz Waveform Relaxation and Krylov Accelerators for Reactive Transport

In this work we propose new algorithms for space time nonlinear reactive transport. They conjugate the versatility of Optimized Schwarz Waveform Relaxation, permitting adaptive time stepping, see [1, 12], and the fast convergence of Newton algorithms, see [6]. We present three approaches which differ in the order of combination of Newton’s method and the Schwarz waveform relaxation algorithm. I...

متن کامل

Optimized Schwarz Waveform Relaxation and Discontinuous Galerkin Time Stepping for Heterogeneous Problems

We design and analyze a Schwarz waveform relaxation algorithm for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. The interfaces are curved, and we use optimized Ventcell transmission conditions. We analyze the semidiscretization in time with discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite ...

متن کامل

Schwarz Waveform Relaxation Methods for Systems of Semi-Linear Reaction-Diffusion Equations

Schwarz waveform relaxation methods have been studied for a wide range of scalar linear partial differential equations (PDEs) of parabolic and hyperbolic type. They are based on a space-time decomposition of the computational domain and the subdomain iteration uses an overlapping decomposition in space. There are only few convergence studies for non-linear PDEs. We analyze in this paper the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011